
GridSQL Administration Guide

GridSQL
Version 2.0

February 2010

GridSQL Administration Guide

Table of Contents
 Table of Contents .. 2
 1 Introduction ... 4
1.1 Overview .. 4
1.2 References .. 4
2 Installation ... 5
2.1 Operating System .. 5

2.1.1 Additional Linux Kernel Settings ... 5
2.1.1.1 Number of Open Files .. 5
2.1.1.2 Read-Ahead .. 6
2.1.1.3 Access Time ... 6

2.2 Java ... 6
2.3 GridSQL .. 7

2.3.1 Linux ... 7
2.3.1.1 From the RPM File ... 7
2.3.1.2 From gridsql-2.0.tar.gz .. 8
2.3.1.3 GridSQL Agents .. 9

2.3.2 MS-Windows .. 11
2.4 Underlying Database ... 12

2.4.1 Logging Considerations ... 12
2.4.2 Initializing Underlying System .. 12
2.4.3 Network .. 13
2.4.4 Configuring the Underlying Database .. 13
2.4.5 Date Style ... 15
2.4.6 Starting the Underlying Database Server Process 15
2.4.7 Database User ... 16

2.4.7.1 Coordinator .. 16
2.4.8 Verify .. 17

3 GridSQL Configuration ... 18
3.1 The gridsql.config File ... 18

3.1.1 Sample gridsql.config File .. 19
3.1.2 Configuring GridSQL Agents .. 21

3.1.2.1 Agents ... 22
3.2 Initializing GridSQL ... 24

3.2.1 Manual Mode ... 24
3.3 Starting the Coordinator and Agents ... 26

3.3.1 Coordinator ... 26
3.3.2 Agents .. 26

3.4 Creating User Databases ... 27
3.4.1 Example .. 27

3.5 Testing the Database .. 28
3.6 Starting and Stopping Databases ... 28
3.7 Dropping Databases ... 29
3.8 Planning .. 29
3.9 Multi-Language and Unicode Support .. 30
3.10 The gridsql.config Reference ... 31

3.10.1 Server Settings .. 31
3.10.2 Metedata Database Settings .. 32
3.10.3 JDBC and Pool Settings ... 33

Page 2 Copyright © 2010

GridSQL Administration Guide

3.10.4 Configuration for Underlying Database .. 35
3.10.4.1 Temp Table Handling .. 35
3.10.4.2 SQL Command Templates ... 36
3.10.4.3 Date and Time Settings .. 38
3.10.4.4 Other Settings ... 38
3.10.4.5 Gateway Settings for Administering Underlying Databases 40

3.10.5 gs-loader settings ... 40
3.10.6 Data Types and Data Type Mapping .. 41
3.10.7 Function Mapping ... 42
3.10.8 Logging .. 44

4 Users and Privileges .. 45
4.1 Introduction ... 45
4.2 Users .. 45
4.3 Privileges ... 45
5 Redundancy, Backup and Recovery .. 46
5.1 Redundancy ... 46
5.2 Load Balancing ... 46
5.3 Backup & Recovery ... 48
6 Command Reference .. 49
6.1 gs-cmdline ... 49
6.2 gs-createdb ... 51
6.3 gs-createmddb ... 52
6.4 gs-dropdb ... 53
6.5 gs-agent ... 54
6.6 gs-dbstart ... 55
6.7 gs-dbstop .. 55
6.8 gs-server .. 56
6.9 gs-shutdown ... 56
6.10 gs-loader and gs-impex .. 56
7 Isolation Levels and Locking ... 57
8 Troubleshooting .. 58
8.1 Issues with Installation and Configuration ... 58
8.2 Issues with Execution ... 58
9 Appendices ... 61
9.1 Appendix A – Metadata Database Schema ... 61

Page 3 Copyright © 2010

1 Introduction

1.1 Overview

This document describes how to install and configure EnterpriseDB GridSQL. In
addition, it includes a command reference for administering the system.

1.2 References
GridSQL Planning Guide
GridSQL Import & Export Utilities
GridSQL SQL Reference

2 Installation

2.1 Operating System

GridSQL can run under Linux or any other platform that supports Java.

2.1.1 Additional Linux Kernel Settings

There are some additional kernel configuration values that should be modified. The
underlying database requires ample shared memory, so the kernel.shmmax,
kernel.shmall and kernel.sem values should be increased. This can be set in the
/etc/sysctl.conf file.

The value of kernel.shmmax refers to the maximum size of shared memory
segments in bytes, while kernel.shmmall is the total amount of shared memory
available. These values should be set fairly high; you can start with 50% of available
memory and monitor the system to adjust. If a lot of system paging occurs, lower
this value. Conversely, increase it if there is still a lot of available memory
afterwards.

The value kernel.shmni is for the system wide maximum number of shared memory
segments. 4096 is a reasonable value.

The kernel setting kernel.sem maps to four parameters: SEMMSL SEMMNS SEMOPM
SEMMNI

SEMMSL: maximum num of semaphores per id
SEMMNS: maximum number of semaphores in system (SEMMNI*SEMMSL)
SEMOPM: maximum num of ops per semop call
SEMMNI: maximum number of semaphore identifiers

Sample values for 2 GB of shared memory to be set in /etc/sysctl.conf (adjust
shmmax and shmall, depending on desired shared memory):

kernel.shmmax = 68719476736
kernel.shmmni = 4096
kernel.shmall = 4294967296
kernel.sem = 1000 128000 100 128

After modifying the file, execute “sysctl –p” to have these values take effect.

2.1.1.1 Number of Open Files

Depending on your configuration, you may run into errors involving a limit to the
number of open files that your operating system allows the user to have. This is
particularly likely when you have several nodes in the cluster.

To change that, increase the limit of the number of files that can be open by
modifying the /etc/security/limits.conf file, increasing the value for nofile.

If you do not do this, you may encounter error messages like “unable to send to
nodes”.

2.1.1.2 Read-Ahead

In data warehousing, tables are often scanned entirely, so having the operating
system read ahead can significantly boost query times. You can increase the read-
ahead size for your RAID devices with the blockdev command. For example:

blockdev –-setra 16384 <device>

2.1.1.3 Access Time

Very often whenever files are accessed, the operating system will update the last
time of read or write access for bookkeeping. To turn off this extra unnecessary
overhead in Linux, modify the /etc/fstab file after you create your dedicated data
partitions, and add the “noatime” attribute.

2.2 Java

This software requires the Java Runtime Environment 5,
version 1.5.0_12 or later. Earlier versions of the JRE may
result in memory leaks that over time result in an OutOfMemory
exception.

GridSQL has also been successfully tested with Java 6 update 18,
and is recommended.

If GridSQL was not installed via an installer that included a
JRE, please go to http://java.sun.com/javase/downloads/index.jsp
to download a Java Runtime Environment Note that some Linux versions come with
Java already installed, but these will not necessarily work with GridSQL. For
example, the pre-installed version of Java on Ubuntu 7.10 causes the GridSQL
process to chew up CPU and is unresponsive.

2.3 GridSQL

The instructions for installing GridSQL vary, depending on the target operating
system.

We will discuss configuring the actual GridSQL system itself in the next chapter.

2.3.1 Linux

If you used an EnterpriseDB installer, these files will already be properly installed in a
subdirectory named gridsql below the /opt/PostgresPlus/8.4AS directory, and
you can skip this section.

2.3.1.1 From the RPM File

1. Login as root.

2. We will install the RPM file.

rpm –ivh gridsql-2.0-0.noarch.rpm

including the full path to the rpm as necessary. This will create the GridSQL
group and user, and install in the directory /usr/local/gridsql-2.0.

At this point, it will create the following subdirectories: bin, lib, config, and
log. The bin directory contains some scripts that are wrappers to make it
easier to execute GridSQL programs, which are all java-based. The lib
directory contains external jar libraries that are required by GridSQL.
Configuration information that must be customized is found in the
gridsql.config file in the config directory. Finally, a log directory is created
for containing the server log files.

3. Configure environment. Modify /usr/local/gridsql-2.0/gridsql_env.sh, if
necessary. It includes the following lines:

export GSPATH=/usr/local/gridsql-2.0

export CLASSPATH=$GSPATH/lib/edb-jdbc14.jar:$CLASSPATH

export PATH=$PATH:$GSPATH/bin

The first line just defines the GSPATH environment variable, which is
referenced in the scripts and must be set properly.

The second line defines CLASSPATH, which is used by the script when
executing java programs to find additional needed external libraries. This
should be set to the JDBC jar file you are using to interact with the underlying
database. In the example above, it is set to the default EnterpriseDB JDBC
driver jar.

The third line can be uncommented if you wish to include the $GSPATH/bin
directory in the user’s environment as well.

4. Users executing GridSQL programs should source the /usr/local/gridsql-
2.0/gridsql_env.sh file to have their environment set correctly:

source /usr/local/gridsql-2.0/gridsql_env.sh

or

. /usr/local/gridsql-2.0/gridsql_env.sh

The enterprisedb user and other users may want to reference this file in an
appropriate profile file, like ~/.bash_profile. These users should also be
made part of the edb group, if they want to execute anything other than
cmdline. For most commands, it is required that you execute them as the
user enterprisedb.

2.3.1.2 From gridsql- 2.0.tar.gz

Instead of an rpm file, a tarball (.tar.gz file) may be used instead to
accommodate manual installations.

5. If not already, change to user root:

su –

6. Create a user group edb, if it does not already exist:

groupadd edb

7. Create an operating system user enterprisedb:

useradd -g edb enterprisedb

8. All the files will be installed under /usr/local/gridsql-2.0. Extract the
downloaded gzipped tar file to /usr/local/

tar xvzf gridsql1_0.tar.gz –C /usr/local

At this point, it will create the following subdirectories: bin, lib, config, and
log. The bin directory contains some scripts that are wrappers to make it
easier to execute GridSQL programs, which are all java-based. The lib
directory contains external jar libraries that are required by GridSQL.
Configuration information that must be customized is found in the
gridsql.config file in the config directory. Finally, a log directory is created
for containing the server log files.

9. Set ownership of the files correctly:

chown enterprisedb –R /usr/local/gridsql-2.0
chgrp enterprisedb –R /usr/local/gridsql-2.0

10.We only allow the enterprisedb user to execute programs, except for cmdline.
We also want to set other permissions:

chmod 700 /usr/local/gridsql-2.0/bin/*.sh
chmod 775 /usr/local/gridsql-2.0/log
chmod 755 /usr/local/gridsql-2.0/bin/gs-cmdline.sh
chmod 600 /usr/local/gridsql-2.0/config/*

11.Configure environment. Modify /usr/local/gridsql-2.0/gridsql_env.sh. It
includes the following lines:

export GSPATH=/usr/local/gridsql-2.0

export CLASSPATH=$GSPATH/lib/edb-jdbc14.jar

#export PATH=$PATH:$GSPATH/bin

The first line just defines the GSPATH environment variable, which is
referenced in the scripts and must be set properly.

The second line defines CLASSPATH, which is used by the script when
executing java programs to find additional needed external libraries. This
should be set to the JDBC jar file you are using to interact with the underlying
database. In the example above, it is set to the EnterpriseDB JDBC driver jar.

The third line can be uncommented if you wish to include the $GSPATH/bin
directory in the user’s environment as well.

12.Users executing GridSQL programs should source the /usr/local/gridsql-
2.0/gridsql_env.sh file to have their environment set correctly:

source /usr/local/gridsql-2.0/gridsql_env.sh

or

. /usr/local/gridsql-2.0/gridsql_env.sh

The GridSQL user and other users may want to reference this file in an
appropriate profile file, like ~/.bash_profile. These users should also be
made part of the GridSQL group, if they want to execute anything other than
cmdline. For most commands, it is required that you execute them as the
user enterprisedb.

2.3.1.3 GridSQL Agents

If you wish to achieve better scalability and performance by having an agent run on
each of the underlying nodes, repeat the procedure on each node that will participate
in the database cluster.

By default, each node agent will run within the main coordinator process. For better
scalability and avoid having the coordinator node become a bottleneck, you can

move this out onto each of the nodes, with each agent running as a separate
process.

It is recommended to first configure a centralized version without the
agents running on the nodes and verify that the system is working properly,
before configuring the agents. It is easier to isolate any configuration issues
this way.

2.3.2 MS-Windows

There is no automatic installation program for Windows. We describe how to install
GridSQL using a Zip file.

1. Create an enterprisedb user, and login as enterprisedb.
2. Create a directory named \enterprisedb. Unzip gridsql-2.0.zip, which will

create a subdirectory named gridsql.

At this point, it will create the following subdirectories: bin, lib, config, and
log. The bin directory contains some scripts that are wrappers to make it
easier to execute GridSQL programs, which are all java-based. The lib
directory contains external jar libraries that are required by GridSQL.
Configuration information that must be customized is found in the
gridsql.config file in the config directory. Finally, a log directory is created
for containing the server log file.

3. Add the JDBC Driver required by your underlying database to the CLASSPATH
environment variable. The PostgreSQL-compatible EnterpriseDB driver is
included, so CLASSPATH can be set to c:\enterprisedb\gridsql\lib\edb-
jdbc14.jar. If using another database server, you can copy the driver to the
coordinator and then reference the full path at the end of your CLASSPATH
variable, including the “;” separator required in Windows, if necessary. The
scripts installed in the bin directory will look for classes referred to by the
CLASSPATH environment variable.

To access the environment variables in Windows: open a Windows Explorer,
right click on My Computer, select Properties, select the Advanced tab, and
click the Environment Variables button.

4. Set and export GSPATH in your environment to be the base directory, such as
C:\enterprisedb\gridsql.

5. Add C:\enterprisedb\gridsql\bin to your PATH environment variable.

2.4 Underlying Database

GridSQL uses Postgres Plus Advanced Server 8.3 or later as the underlying database
on each of the nodes (Postgres Plus Advanced Server 8.4 is recommended).
Alternatively, Postgres Plus or PostgreSQL may also be used, but for consistency this
document will refer to Postgres Plus Advanced Server. This means that you need to
take care when examples are cited in this document and refer to specific paths that
may not exist on your particular server.

The underlying database should be fully and properly installed on all of the nodes
that are going to make up the GridSQL cluster. It is also recommended to install
Postgres Plus on all of the nodes exactly the same way.

It is important that your environment is set up properly so that GridSQL can work
with the underlying database and use its utilities. It is a good idea to add the
EnterpriseDB bin directory to your PATH environment variable, to allow access to all
of its programs. You should add this to the appropriate profile file for GridSQL, like
~enterprisedb/.bash_profile, if not already configured. For example, if using
EnterpriseDB’s Postgres Plus Advanced Server:

export PATH=/opt/PostgresPlus/8.4AS/dbserver/bin:$PATH

2.4.1 Logging Considerations

Like other database systems, EnterpriseDB uses logging for point in time recovery,
called Write Ahead Logging (WAL).

The location of these files in a subdirectory called pg_xlog in the data directory (the
data directory is the one specified with initdb). Although it is not required, you may
want to consider keeping these files on a separate disk, for performance reasons.
This can be done by either setting up a symbolic link, or by creating a new disk
partition and mounting it at pg_xlog, below the data directory.

2.4.2 Initializing Underlying System

Postgres Plus Advanced Server requires execution of the initdb command for
initialization. If you used an installer, you can skip this step. Login as the user
enterprisedb, and execute a command like the one below.

The –D option must be included to indicate the location of the data. We recommend
a dedicated device with redundancy, whether local with RAID 10 or RAID 5, or
attached via SAN. If the EnterpriseDB installer already prompted you for this and you
configured it, you can skip this step.

In the example below, the data directory is initialized at /GSDATA.

/opt/PostgresPlus/8.4AS/dbserver/bin/initdb –D /GSDATA

The initdb command must be executed on each node that will make up the GridSQL
cluster.

2.4.3 Network

We must configure each of the underlying database instances to communicate with
one another for the GridSQL cluster to function properly.

With EnterpriseDB by default, only local connections will be accepted. Since the
instances need to work together, an additional configuration parameter must be set
in the postgresql.conf file, listen_addresses. It takes a comma-separated list of
host names or ip addresses, including wildcards. For security, you should set this to
just a list of the other nodes in the cluster. If using monitoring utilities from other
locations, you can specify something broader, including *.

The next step is to configure the pg_hba.conf file, which is used to determine which
users and clients can connect to the database. The file is found in the data directory
specified by the initdb command earlier.

More detailed information about configuring the file can be found in the EnterpriseDB
documentation, but we include an example entry below:

TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 192.168.75.0/24 md5

The above entry allows any connection from the 192.168.75.* subnet, provided that
the user name and password are valid, using the md5 authentication method. It is a
good idea to put the nodes on its own subnet, with access to the underlying
databases only occurring through GridSQL.

2.4.4 Configuring the Underlying Database

EnterpriseDB offers many configuration and tuning options to help database
administrators improve the performance of their system for the particular
environment that it is running in. In this case, we want to tune the database for a
decision support environment.

Available configuration options can be found in a file named postgres.conf in the
data directory. The most important options that you’ll want to be concerned about
appear below.

shared_buffers = 512MB
maintenance_work_mem = 256MB
work_mem = 128MB
effective_cache_size = 2GB
random_page_cost = 40

wal_buffers = 64
checkpoint_segments = 128
checkpoint_timeout = 900

constraint_exclusion = on
max_connections = 100
default_statistics_target = 500

edb_redwood_date = false

More details about these options appear in the EnterpriseDB or PostgreSQL
documentation. The parameters in the first group are the most important, and
should be adjusted based on the amount of memory that you have and number of
users. Tuning can be difficult and may require trial and error to get the best
results, depending on your environment, the number of users, the schema,
and the queries.

We briefly discuss these parameters.

The parameter shared_buffers is for the database’s buffer cache. In OLTP systems,
you normally want this to be as large as possible (available system memory), but not
exceeding 2.5GB. For data warehousing, it is best to set this according to trial and
error with your data. Sometimes it is surprisingly faster to run with a smaller sized
cache, such as 256MB. Note that Linux has its own file system cache, so data can
still be cached in memory, just not in the database’s cache. This also means that
double buffering can occur, once in shared_buffers, and again in the file system
cache, making less than optimal use of available memory for caching. Data
warehousing often involves large sequential scans anyway, and an overly large
shared_buffers setting where a large cache is managed may actually hurt
performance.

The parameter maintenance_work_mem is used for creating indexes, foreign keys,
and vacuum and analyze. You may want to consider setting this value much higher
initially while loading up the database and building indexes, and then lowering it
later.

The parameter work_mem is used for operations like sorting and aggregation. Setting
this high can substantially improve sort performance. As a result, we have increased
the default from 1MB to 128MB here. Keep in mind that a single query may need
multiple work_mem allocations, and you may have multiple concurrent users at the
same time, so try not set work_mem too high, or swapping may occur.

The EnterpriseDB query planner is only influenced by effective_cache_size; it
does not actually influence allocated memory. For OLTP systems, it is recommended
that this is about 2/3 or RAM. The parameter random_page_cost is the internal cost
the optimizer uses for seek costing. While it depends on your system configuration,
schema and queries, you will probably want to bias things towards sequential scans
instead of index seeks. One way to do that is to decrease effective_cache_size
and increase random_page_cost.

The second group of values is used for the Write Ahead Log, and can impact
performance in particular when loading the database.

The parameter constraint_exclusion is off by default and must be set to on in
order to take advantage of EnterpriseDB’s feature that allows you to partition into
subtables to reduce the amount of data that must be scanned for statements with
qualifying WHERE clauses.

The parameter max_connections determines how many simultaneous connections
can connect to the EnterpriseDB database. GridSQL creates pools of connections to
the database, and you want to make sure you have enough connections. The exact
amount for this to use may be influenced by how you configure the GridSQL
gridsql.config file (described later), but it is a good idea to make sure that this is set
sufficiently high. Note that if you use multiple logical nodes per same physical
server, you will need to increase this; one pool will be used for each logical node,
even though they refer to the same Postgres Plus instance. Also, additional
connections are needed for: row shipping during some queries; a coordinator
connection pool; a connection to the metadata database. If connections are an issue,
you can increase max_connections and consider decreasing the min and max pool
size.

The final parameter, edb_redwood_date only applies if using Postgres Plus Advanced
Server instead of PostgreSQL. Both Advanved Server and GridSQL need to have the
same redwood date settings to have the desired effect.

2.4.5 Date Style

This only applies to Postgres Plus Advanced Server, and not Postgres Plus or
PostgreSQL.

Postgres Plus Advanced Server has a setting called edb_redwood_date, configurable
in the postgresql.conf file. Setting it to true indicates that date handling should be
compatible with Redwood. Note that one must also set xdb.edb_redwood_date to
true in the gridsql.config file as well (false by default); GridSQL needs to know
how dates are expected in the underlying database.

2.4.6 Starting the Underlying Database Server Process

EnterpriseDB offers the pg_ctl wrapper to start the postmaster and run it as a
background process. For example, if initdb used /GSDATA as the location of
EnterpriseDB data, you can start the postmaster process using the command below:

/opt/PostgresPlus/8.4AS/dbserver/bin/pg_ctl start -D /GSDATA -l
logfile

The –l option allows you to specify a log file for the EnterpriseDB log.

2.4.7 Database User

A database user must be created on each instance that will be used by GridSQL for
connecting to the databases. This single user will always be used for connecting to
the underlying database. The username and password will be required later when
configuring GridSQL’s gridsql.config file, so please make note of it. You should use
the same username and password on all instances.

In the example below, we create a database user named gridsql. Note that this is a
database user and not operating system user. GridSQL will later use this user when
connecting to the individual database instances running on the nodes.

/opt/PostgresPlus/8.4AS/dbserver/bin/createuser –d –E gridsql –U
enterprisedb -P

After executing this, it will prompt you for a password, and ask you to retype it.
Please note this password for later. It may also give you a third password prompt.
This is because of the –U option, where we are executing the command as the
database super user that you used when you configured the underlying database, in
this case user enterprisedb.

Repeat the execution of createuser on each node.

If you have difficulty executing this, it may be because of the underlying database
configuration. If you installed EnterpriseDB PostgresPlus Advanced Server, it may be
using the port 5432, while EnterpriseDB’s client tools use 5444 by default. Similarly,
the client tools try and use the default database edb by default. You can work-around
these problems by creating a dummy database named edb, and including the –p
5432 option for the command line tools like createuser. If the underlying database
port being used is indeed 5432, make sure xdb.default.dbport=5432 is set in the
gridsql.config file, instead of the default of 5444.

2.4.7.1 Coordinator

When using EnterpriseDB with authentication, a password will be required for
authentication. GridSQL makes use of EnterpriseDB command line utilities, so we
create a .pgpass file in the enterprisedb user’s home directory. This is used by
EnterpriseDB to provide passwords to connect to other servers. This only needs to be
done on the coordinator.

Login as user enterprisedb.

The file’s access must be restricted to the user, in this case enterprisedb. After
creating the file, you need to restrict access via chmod 600
~enterprisedb/.pgpass.

It is important that you setup .pgpass, otherwise, executing GridSQL scripts
like gs-createmddb.sh will appear to hang, because the particular
EnterpriseDB utility will be trying to prompt for a password.

The lines in the file are to appear in the format:

hostname:port:database:username:password

Wildcards may be used. An example appears below:

::*:gridsql:password

where password is the password we used with createuser. The GridSQL process
that will later run under the enterprisedb user can now connect to all nodes and use
EnterpriseDB utilities without requiring a password from the user. Note that user
“gridsql” here is a database user, not an operating system user.

2.4.8 Verify

Before proceeding to configuring GridSQL, it is a good idea to verify that the
underlying databases and network have been installed and configured properly.
Doing this now will help make troubleshooting your GridSQL installation
easier by eliminating the likelihood of configuration issues with the
underlying database.

Verification can be done by creating a test database on each, by running createdb
from the coordinator.

/opt/PostgresPlus/8.4AS/dbserver/bin/createdb –h node1 –U gridsql
test

Here, node1 is the host name or IP address of one of the nodes that will be in the
GridSQL cluster. Run this command from the coordinator node for each node. We
use the database user gridsql that we previously created and verify login and create
privilege.

If there is a problem, verify that the postgresql.conf file has listen_addresses
set to allowable hosts, that the node has a valid pg_hba.conf file, and that the
enterprisedb user on the coordinator has a valid .pgpass (or pgpass.conf) file. Note
that if you modify the pg_hba.conf file, you must restart postmaster.

3 GridSQL Configuration

This chapter discusses how to configure GridSQL, including creating and using
databases. The first part assumes a first time configuration after installation, and the
chapter concludes with more information about multi-language support and an
gridsql.config file reference.

If you have not done so already, login as the enterprisedb user to modify.

3.1 The gridsql.config File

A configuration file must be created that will determine how the GridSQL server is
run. When the GridSQL server is run, it reads from a file named gridsql.config in
the config directory for system defaults. The file needs to be configured properly to
initialize the metadata database and user-created databases.

There are a myriad of options, but few options need to be changed in practice, those
being the host or IP of the nodes, underlying database username and password, and
database port.

Permissions for gridsql.config should be set to be readable only by the
enterprisedb user, since the file contains username and password
information for connecting to the underlying databases.

The options for xdb.metadata.* determine where the metadata database resides.
The metadata database contains information about all of the user-created databases
and schema info like tables, columns, data types, indexes, and constraints. Make
sure that the xdb.metadata values are set properly, before trying to execute gs-
createmddb, which will create the metadata database.

This gridsql.config file is also where you define the nodes that are used in the
GridSQL cluster, specifying the host or IP address of each node. The username and
password should be set to the same values as those you used when you created the
database user earlier (createuser with EnterpriseDB).

The included default gridsql.config file contains the most important options you
may want to change. A detailed reference of all of the available configuration options
appears at the end of this chapter, along with descriptions of mapping data types and
defining and overriding SQL functions.

By default GridSQL will use the EnterpriseDB JDBC driver included in the gridsql lib
subdirectory. If you wish to use the PostgreSQL driver instead, then the following
options can be overriden as follows:

xdb.default.jdbcdriver=org.postgresql.Driver
xdb.default.jdbcstring=jdbc:postgresql://{dbhost}:{dbport}/{database}

3.1.1 Sample gridsql.config File

To give a better idea of what a real gridsql.config file looks like, a sample one
appears below for a 4 node system. In addition, a sample gridsql.config is found
in the config directory of your installation.

Note that some lines contain template variables that are enclosed with curly braces,
like {dbhost} and {database}. These are dynamically substituted by the GridSQL
server per database as needed- there is no need for you to replace these here.

Be sure and modify the username and password information properly for the
underlying databases, as well as the hostname or IP address of each node in the
database for xdb.node.1.dbhost through xdb.node.1.dbhost. Also, if logging is
desired, modify the File parameter of each logger to be an absolute path to the
desired target file location.

The example below is for a four-node system. Note that you can use the same host
or IP address for all if you would like to create a “cluster” on a single system to just
familiarize yourself with GridSQL. It will assign a unique database name to each
“node,” creating 4 underlying databases. Also, you may choose to create fewer than
4 nodes if you wish. Just change the xdb.nodecount and comment out or remove
the appropriate xdb.node.n.dbhost entries.

In this file four different logs are referenced, as can be seen by the log4j properties.
There is a main server log, a query log (to log SELECT statements), and a long query
log (for logging long SELECT statements).

###
gridsql.config
#
GridSQL configuration file
###

###
Server settings
###

xdb.port=6453
xdb.maxconnections=10

###
Node & JDBC Pool configuration

Set defaults for all nodes and MetaData database.
These can be overriden.
Note that {dbhost} and {database} are template variables
that will be substituted dynamically per database

xdb.default.dbusername=gridsql
xdb.default.dbpassword=password

Connection thread defaults for each node
Note that these are pooled, so the number of clients connected
to the GridSQL server can be greater than pool size.

xdb.default.threads.pool.initsize=5
xdb.default.threads.pool.maxsize=10

Connectivity for MetaData database

xdb.metadata.database=XDBSYS
xdb.metadata.dbhost=localhost

The number of nodes in cluster

xdb.nodecount=4

Individual node info
Set these to hostname or IP addresses of nodes

xdb.node.1.dbhost=node1
xdb.node.2.dbhost=node2
xdb.node.3.dbhost=node3
xdb.node.4.dbhost=node4

Designate coordinator node
In practice, the coordinator node should be the node where
the GridSQL database is running.

xdb.coordinator.node=1

###
Logging Settings
###

The log4j library is used.
More info at http://logging.apache.org/log4j/docs/

rootLogger. Log warnings and errors.
log4j.rootLogger=WARN, console

Define other characteristics for console log
log4j.appender.console=org.apache.log4j.RollingFileAppender
log4j.appender.console.maxFileSize=500KB
log4j.appender.console.maxBackupIndex=10
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{ISO8601} - %-5p %m%n
log4j.appender.console.File=/usr/local/gridsql-2.0/log/console.log

Log Server messages to the console logger
log4j.logger.Server=ALL, console

Query logger.
This logs all queries sent to the database.
log4j.logger.query=INFO, QUERY
log4j.appender.QUERY=org.apache.log4j.RollingFileAppender
log4j.appender.QUERY.File=/usr/local/gridsql-2.0/log/query.log
log4j.appender.QUERY.maxFileSize=500KB
log4j.appender.QUERY.maxBackupIndex=10
log4j.appender.QUERY.layout=org.apache.log4j.PatternLayout
log4j.appender.QUERY.layout.ConversionPattern=%d{ISO8601} - %m%n

Uncomment this if you would like other SQL commands other
than SELECT to be logged in the query logger as well
(e.g. INSERT, UPDATE, DELETE).

#log4j.logger.command=INFO, QUERY

A separate "long query" log may be defined to separately log queries
that appear to be be taking a long time.
Specify the threshold in seconds at which queries will show up in the
long query log.
xdb.longQuerySeconds=300

log4j.logger.longquery=INFO, LONGQUERY
log4j.appender.LONGQUERY=org.apache.log4j.RollingFileAppender
log4j.appender.LONGQUERY.File=/usr/local/gridsql-2.0/log/longqry.log
log4j.appender.LONGQUERY.maxFileSize=500KB
log4j.appender.LONGQUERY.maxBackupIndex=10
log4j.appender.LONGQUERY.layout=org.apache.log4j.PatternLayout
log4j.appender.LONGQUERY.layout.ConversionPattern=%d{ISO8601} - %m%n

activity logger.
This logs all queries sent to the database.
log4j.logger.activity=INFO, activity
log4j.appender.activity=org.apache.log4j.RollingFileAppender
log4j.appender.activity.File=/usr/local/gridsql-2.0/log/activity.log
log4j.appender.activity.maxFileSize=10MB
log4j.appender.activity.maxBackupIndex=10
log4j.appender.activity.layout=org.apache.log4j.PatternLayout
log4j.appender.activity.layout.ConversionPattern=%d{ISO8601} - %m%n

A request is determined to be “long” based on another gridsql.config value,
xdb.longQuerySeconds, which should be set to the number of seconds at which point
it will be logged in the LONGQUERY log.

3.1.2 Configuring GridSQL Agents

This section is applicable if you decide to run dedicated agents on the database
nodes. Note that if the node that is also the coordinator hosts a node database, there
is no need to install an agent process there, it will run within the coordinator process.

If you installed the agent software for the non-coordinator nodes for better
performance, some additional lines are needed in the gridsql.config file on the
coordinator. Please see the sample below:

Only for agent version
Port for node's SocketCommunicator
xdb.node.1.port=6455
xdb.node.1.host=node1
xdb.node.2.port=6455
xdb.node.2.host=node2
xdb.node.3.port=6455
xdb.node.3.host=node3
xdb.node.4.port=6455
xdb.node.4.host=node4

In practice, the coordinator node should be the node where
the GridSQL database is running.

xdb.coordinator.host=node1
xdb.coordinator.port=6454

Specify protocol types.
Can use local connection between coordinator and node 1,
since they are the same system
xdb.connector.0.1=0
xdb.connector.1.0=0

The first group assigns a port and host. Note that xdb.node.n.host differs from
xdb.node.n.dbhost in that dbhost is where the underlying database is, and in
theory could be different from the host where the agent is executing. As a practical
matter, these values will be the same.

The second group configures the coordinator.

The third group specifies the connector type. The format is xdb.connector.m.n.,
where m is the source node number and n is the destination node number. The
default is 2, which is a channel connector. Setting it to 0 indicates that a local
connector should be used, which is more efficient when one node is also a
coordinator node. Note that node number 0 always refers to the coordinator.

3.1.2.1 Agents

In the installation, in the config subdirectory exists two files, gridsql.config and
gridsql_agent.config. A sample gridsql_agent.config file for the agents
appears below:

###
#
gridsql.config - Agent
###
#

###
The coordinator host and port
###

xdb.coordinator.host=node1
xdb.coordinator.port=6454

###
Logging settings
###

log4j.rootLogger=WARN, console

log4j.logger.Server=ALL, console

A1 is set to be a ConsoleAppender.
log4j.appender.console=org.apache.log4j.RollingFileAppender

A1 uses PatternLayout.
log4j.appender.console.layout=org.apache.log4j.PatternLayout

log4j.appender.console.layout.ConversionPattern=%r [%t] %-5p %c %x - %m%n
log4j.appender.console.File=/usr/local/gridsql-2.0/log/agent.log

Note that this file is much shorter than that of the coordinator’s. Other than its own
port number, the coordinator host and logging settings, all other configuration
information is sent over from the coordinator, allowing for centralized maintenance of
the configuration settings.

3.2 Initializing GridSQL

To initialize the GridSQL cluster, the metadata database and an administrative user
must be created.

First, it is a good idea to add the EnterpriseDB bin directory to your PATH
environment variable, to allow access to all of its programs. You may want to also
add this to the appropriate profile like ~enterprisedb/.bash_profile Example:

export PATH=/opt/PostgresPlus/8.4AS/dbserver/bin:$PATH

Also, please verify that GSPATH environment variable has been set correctly to the
base GridSQL directory in gridsql.config.

Before creating any user-defined databases, we must first create the metadata
database to contain information about the user-created databases. Once it is
created, user-created databases and all of their corresponding information about
tables and columns, etc., will be stored there.

In addition, we need to create an administrative user for GridSQL. Note that users in
GridSQL are separate from the users used in Postgres Plus Advanced Server. GridSQL
will always use the same user specified in gridsql.config to communicate with the
underlying Postgres Plus Advanced Server databases. This is completely separate
from the users that are defined to interact with the GridSQL cluster.

For both of these tasks, use the gs-createmddb.sh command. It creates the
required actual database on the underlying node, creates all needed tables, and
creates an administrative user. The exact schema of the metadata database can be
seen in the appendix.

This relies on configuration values stored in the gridsql.config file, so be
sure that it is set properly. Also, refer to the command reference in the next
chapter that discusses gs-createmddb. That means that you set all of the
xdb.metadata.* properties as how you want them, and that gs-createmddb will use
these as your desired settings. The username and password used should be valid
and have permission to create new databases and tables. You can use the username
and password created earlier.

If everything was setup properly in gridsql.config, you are ready to execute gs-
createmddb.sh. To create the metadata database and create an initial user at the
GridSQL level named “admin” with the password “secret”:

gs-createmddb.sh –u admin –p secret

If –p is left off, the user will be prompted for a password.

3.2.1 Manual Mode

You can also choose to create the metadata database manually with the –m option,
instead of having gs-createmddb do it for you. Instructions for doing this with

EnterpriseDB appear below. (Skip this section if you created the metadata database
successfully in the previous section.)

If a database user for the underlying databases was not created in section 2.4.7, you
should do so now.

Next, create the database named XDBSYS, as designated in the gridsql.config file
as the metadata database by using the EnterpriseDB command createdb.

createdb XDBSYS -U gridsql

Now, initialize the GridSQL metadata database. Note that –m is used here, indicating
that the physical database already exists; we just need to initialize it and create the
metadata tables in it. Make sure a valid username and password are set in the
xdb.metadata options of the gridsql.config file for the underlying database. Also,
pass in a GridSQL administrative username and password to create:

gs-createmddb.sh –m –u admin –p secret

Now the metadata database is ready, which can be verified using the EnterpriseDB
command edb-psql (or just psql if using PostgreSQL):

edb-psql -U gridsql -d XDBSYS –h 127.0.0.1

Note that when using edb-psql or psql with GridSQL, you must include the -h option
for host, even if it is local to force it to use a socket connection.

You should plan on backing up the metadata database regularly. Whereas
with other databases, an incremental backup may make the most sense, the
metadata database will be relatively small, so a complete backup should be done.

3.3 Starting the Coordinator and Agents

3.3.1 Coordinator

We are now ready to start the gs-server process so that we can create user
databases. gs-server can be started with no arguments if no databases have been
created yet:

gs-server.sh

This will start the server in the background. If there is a problem with gs-server,
please check the log files in the log directory and verify the configuration in
gridsql.config. Note that when executing the gs-server process, you may need to
modify the parameters that Java uses, increasing the maximum amount of memory
specified in the gs-server.sh launch script, depending on your requirements and
system configuration.

When executing gs-server in the future, you can include a list of previously created
databases to bring online with the –d option. That way, you will not need to
separately execute gs-dbstart.

gs-server.sh –d xtest

3.3.2 Agents

If you installed and configured the cluster to use GridSQL Agents, you will want to
start the agents on all of the nodes. Perform this as user enterprisedb.

The GridSQL agent is started by calling the gs-agent.sh wrapper script in the
GridSQL bin directory. It expects the –n argument, followed by the designated node
number this will act as in the cluster. Example:

gs-agent.sh –n 4

We recommend you start the server on the coordinator first (gs-server.sh), before
starting the agents. If the gs-server process is stopped and restarted, it should
reestablish connections with the running agents. Similarly, if an agent is stopped and
restarted, gs-server will detect that and reestablish a connection.

gs-server will log the event that an agent has successfully connected to it, so if there
is a problem in creating and using databases, please read the coordinator logs to
pinpoint the source of the problem.

3.4 Creating User Databases

Now that the metadata database has been created and gs-server is executing, you
can create your own databases.

First, configure the individual nodes in the gridsql.config file that you will be using
if you have not already. You should have also installed the underlying database such
as Postgres Plus Advanced Server 8.4 on all of those nodes, with the database server
running. Note that it is a good idea to have all of the nodes installed and configured
exactly the same way to make administration easier. If you make any changes to
gridsql.config, you will need to restart gs-server.

It should also be pointed out that you could also have a system where one of the
nodes in the GridSQL system both participates as a member of user database nodes
as well as contains the metadata database.

You create a database by using the gs-createdb.sh utility. When a database is
created, it adds the appropriate information to the metadata database. The gs-
createdb.sh command will also try and create the database on the underlying nodes
if you wish, which is recommended. Otherwise, use the -m (manual) option, which
will only update the metadata database information without trying to create any
databases on the nodes.

See the gs-createdb command in the section of the Command Reference section of
this document for more information.

3.4.1 Example

We show two examples.

The first example will create a GridSQL database named xtest. The physical
underlying databases will be named xtestN1, xtestN2, xtestN3, and xtestN4 on the
nodes, corresponding to their node numbers.

gs-createdb.sh -d xtest -u admin -p <password> -n 1,2,3,4

Note that if you are prompted by a password even with –p, it is the underlying tool,
edb-psql that is prompting you for a password. This means you are executing
createdb under a user where a trusted EnterpriseDB environment has not been
configured. Be sure that it is configured for user enterprisedb, and execute the
command as user enterprisedb.

Manual mode

If desired, the database can also be set up by hand, where the databases are first
created on the individual nodes using EnterpriseDB’s createdb command. Care needs
to be taken to name them with the desired database name followed by “N” and the
node number (<dbname>N1 on node 1, <dbname>N2 on node 2, etc.). Once that

is done, gs-createdb.sh can be called using the “-m” option to wire it up and update
the metadata information.

gs-createdb.sh -d xtest -u admin -p <password> -n 1,2,3,4 -m

3.5 Testing the Database

Once you have successfully created a database, you are ready to test using the
command line utility.

Note that gs-server will automatically bring the created database online and accept
connections to it when you execute gs-createdb.sh.

With the server running ok, execute gs-cmdline.sh, specifying a database and valid
username and password, such as:

gs-cmdline.sh -d xtest -u admin -p <password>

If you were able to connect ok you should receive a command prompt like the
following:

GridSQL->

Try creating a table. The following command creates a table mytable1 and specifies
that rows should be partitioned according to the column col1:

CREATE TABLE mytable1 (col1 INT) PARTITIONING KEY col1 ON ALL;

Try and insert some data:

INSERT INTO mytable1 VALUES (1);
INSERT INTO mytable1 VALUES (2);

Select:
SELECT * FROM mytable1;

If everything looks ok, you can drop the table:

DROP TABLE mytable1;

3.6 Starting and Stopping Databases

The commands gs-dbstart and gs-dbstop communicate with the gs-server process
and can be used to bring GridSQL databases online or offline.

Example:

gs-dbstart.sh –d xtest –u admin –p <password>

gs-dbstop.sh –d xtest –u admin –p <password>

3.7 Dropping Databases

You can drop databases using the dropdb command.

If the database is online, dropdb will fail, so you should first bring it offline with gs-
dbstop:

gs-dbstop.sh –d xtest –u admin –p <password>

An example for dropping the xtest database appears below:

gs-dropdb.sh -d xtest -u admin -p <password>

It will attempt to drop the databases on the underlying nodes, as well as clean out
any metadata information in the XDBSYS database. Please see dropdb in the
Command Reference section of this document for more information.

If dropping fails for some reason, you may want to try again with “-f” (force) option
to continue and try and remove all metadata information from the metadata
database, even if it failed to drop a database on a node.

3.8 Planning

You are now ready to create your own databases. Please refer to important
information in the Planning Guide for important information regarding
determining your database schema and partitioning strategies before
creating tables. A poorly thought out schema will result in less than optimal
performance.

3.9 Multi-Language and Unicode Support

GridSQL supports international character sets, provided the chosen underlying
database supports it as well and is configured properly. For the current version,
however, the GridSQL Metadata database does not support international identifiers,
so all object names such as tables and columns must be standard identifiers using
single-byte characters.

The following steps must be done in order to configure and support this properly

1. The underlying database needs to be configured properly. In Postgres Plus
Advanced Server, unicode is enabled by default.

2. The JDBC Driver for the underlying database that GridSQL uses may require
additional parameters.

3. The GridSQL server must be configured. If you intend to use international
characters from some specific character set, you can specify its name in
gridsql.config configuration file, e.g.:

xdb.charset=windows-1252

The default for xdb.charset is ISO-8859-1.

If Unicode is desired, including support for various clients using different
character sets, then add the following to the gridsql.config file:

xdb.unicode=yes

3.10 The gridsql.config Reference

If you need to customize your particular installation, you can change the
gridsql.config file.

A table appears on the following pages describing all of the possible configuration
options in gridsql.config.

3.10.1 Server Settings

Configuration Value Default Description
log4j.configuration Optional configuration file for

logging preferences in log4j
format. Alternatively,
configuration properties may also
be specified directly in the
gridsql.config file. More
information about log4j appears
later in this chapter.

xdb.coordinator.node The node to use for combining
results from underlying nodes. In
practice, it is the node that
corresponds to where the GridSQL
server is running, whether or not
it is a dedicated coordinator or
not.

xdb.longQuerySeconds 300 The threshold in number of
seconds at which a query is
determined to be a long running
query, and logged in the long
query log, if enabled.

xdb.maxconnections 50 Maximum number of client
connections to GridSQL to allow
at a time.

xdb.nodecount The number of underlying nodes in
the GridSQL cluster

xdb.port 6453 The port number that GridSQL will
use to allow client processes to
connect to. If you have more than
one gs-server running on the same
coordinator node (one for
development, one for testing, for
example), make sure they use
different ports.

3.10.2 Metedata Database Settings

Configuration Value Default Description
xdb.metadata.jdbcdriver com.edb.Driver The class name of the JDBC Driver

to use with underlying metadata
database

xdb.metadata.jdbcstring jdbc:edb://
{dbhost}:{dbport}/
{database}

A template JDBC url to use to
connect to the underlying
database.

xdb.metadata.dbhost The host name or IP address or
the server that contains the
metadata database. In practice,
it will often be the same one as
where the GridSQL server runs.

xdb.metadata.dbport xdb.default.dbport The port to connect to for the
underlying database

xdb.metadata.database The name of the metadata
database, e.g. XDBSYS

xdb.metadata.jdbcuser The user to use when connecting
to the metadata database

xdb.metadata.jdbcpassword The password to use when
connecting to the metadata
database

3.10.3 JDBC and Pool Settings

Configuration Value Default Description
xdb.default.jdbcdriver com.edb.Driver The default driver name to use

for all connections
xdb.default.jdbcstring jdbc:edb://

{dbhost}:{dbport}/
{database}

The default jdbc url to use for
all connections

xdb.default.dbport 5432 The default port to use when
connecting to the underlying
database.

xdb.default.dbusername The default username to use for
all connections

xdb.default.dbpassword The default password to use for
all connections.

xdb.default.threads.pool.initsize 5 Default thread pool size for all
nodes.

xdb.default.threads.pool.idle 600000 Default idle time in
milliseconds.

xdb.default.threads.pool.maxsize 10 Default max thread pool size for
all nodes.

xdb.default.threads.pool.timeout 60000 Default pool timeout for all
nodes in milliseconds.

xdb.jdbc.coordinator.pool.initsize xdb.default.threads
.pool.initsize

The initial size of the
coordinator connection pool.

xdb.jdbc.coordinator.pool.maxsize xdb.default.threads
.pool.maxsize * 0.8

The maximum size of the
coordinator connection pool

xdb.jdbc.pool.maxsize xdb.default.threads
.pool.maxsize

Maximum number of connections per
JDBC pool for underlying node.
Note that this is an important
value for managing simultaneous
connections. You may still allow
a large number of client
connections via
xdb.maxconnections, but you might
want to limit how many
simultaneous queries can execute
on the underlying databases at
the same time by limiting the
pool here. In addition, depending
on your underlying database, you
might have licensing restrictions
that dictate a smaller pool size.
The GridSQL Scheduler will handle
sharing and managing of these
pools.

xdb.jdbc.pool.initsize xdb.default.threads
.pool.initsize

Initial JDBC pool size

xdb.jdbc.pool.idle xdb.default.threads
.pool.idle

Default idle timeout value for
JDBC Pool, in milliseconds. After
this time, connections are
released and pool is shrunk.

xdb.jdbc.pool.timeout xdb.default.threads
.pool.timeout

Maximum time to wait for
available jdbc connection from
pool

xdb.jdbc.pool.largequery.count 2 The number of connections to
allow for “large queries”. This
allows us to reserve some
connections for low-cost
commands, in effect reserving

connections for fast operations
without having to have them wait
if all connections are being used
executing large queries. This
also provides a mechanism for
allowing the DBA to be able to
connect and administer the server
if it is very busy.

xdb.jdbc.pool.largequery.threshold 25000 The cost at which a query will be
designated as a “long” query. See
xdb.jdbc.largequery.count for
more details.

xdb.node.n.dbhost The host address of the
underlying database that the node
is using, where n is the node id.
In practice, the host will be
same as the node itself, but that
is not required.

xdb.node.n.dbport The default port to use when
connecting to the underlying
database.

xdb.node.n.jdbcdriver The JDBC driver to use for node
n, where n is the node id.

xdb.node.n.jdbcstring The JDBC URL template string used
to connect to node n, where n is
the node id.

xdb.node.n.threads.pool.maxsize 10 Maximum thread execution pool
size for node n. In practice,
this should be set to the same
value as xdb.jdbc.pool.initsize.

xdb.node.n.threads.pool.initsize 5 Initial thread pool size for node
id n.

xdb.node.n.threads.pool.idle 600000 In milliseconds, how long to
allow a thread to be active with
no activity before destroying it.

xdb.node.n.threads.pool.timeout 60000 In milliseconds, how long to wait
on an available thread.

xdb.nodeFetchSize 1000 The fetch size to use on the
underlying connection.

xdb.persist_on_set true If the client connection issues a
SET command, persist the
underlying connections. If
persisted, these are not
available from the pool, and may
impact how many concurrent
connections available.

3.10.4 Configuration for Underlying Database

3.10.4.1 Temp Table Handling

Configuration Value Default Description
xdb.sqlcommand.createTempTable.start CREATE TEMP TABLE Start of command for CREATE TABLE

statement for creating temp
table. Allows for alternate
syntaxes like “CREATE TEMP
TABLE”. See also
xdb.tempTablePrefix.

This is for temp tables that the
end user specifies.

xdb.sqlcommand.createTempTable.suffix WITHOUT OIDS Suffix to add at the end of
CREATE statements for temp
tables. This can be used to allow
disabling of logging information
on the underlying database and
greatly improve performance,
since temporary tables are used
internally by GridSQL.

This is for temp tables that the
user specifies.

xdb.sqlcommand.createGlobalTempTable.
start

CREATE TABLE This is used when creating
internal temp tables by the
database for query processing.

Real tables are used, in order to
access them across sessions.

xdb.sqlcommand.createGlobalTempTable.
suffix

WITHOUT OIDS The suffix to use when creating
an internal temp table used for
query processing.

Default is an empty string.
xdb.tempTablePrefix TMPT Temporary table prefix to use in

underlying database. Various
databases have different
conventions, like “TEMP.” or “#”.

Warning- be careful about
assigning. On startup, GridSQL
will try and delete any tables
that start with this name, in
case permanent tables were used
and tables were not cleaned up
due to a server error.

xdb.allowtemptableindex true Whether or not the underlying
database allows the support of
indexes on temporary tables.

xdb.temporary_intermediate_tables !
xdb.use_load_for_
step

If temporary intermediate tables
were used. This is used for
INSERT INTO.

xdb.tempTableSelect select tablename
from pg_tables
where tablename
LIKE
'{xdb.tempTablePr
efix}%’

If “fake” temp tables are used on
the underlying database (instead
of actual temp tables), this
value can be used to determine
how to obtain a list of temp
tables on the underlying nodes,

to purge any tables at gs-server
start-up, in case there are any
remaining from previous execution
that were not cleaned due to an
error.

3.10.4.2 SQL Command Templates

Below are command templates that can be overridden, along with their defaults.

Configuration Value Default Description
xdb.sqlcommand
.altertable.addcolumn

add {colname} For adding columns within an
ALTER TABLE command

xdb.sqlcommand
.altertable.addprimary

alter table
{table} add
constraint
{constr_name}
primary
key({col_list})

For adding a primary key to a
table

xdb.sqlcommand
.altertable.addforeignkey

alter table
{table} add
constraint
{constr_name}
foreign key
({col_list})
references
{reftable}
({col_map_list})

For adding a foreign key to a
table

xdb.sqlcommand
.altertable.dropcolumn

alter table
{table} drop
{colname}

For dropping a column

xdb.sqlcommand
.altertable.dropconstraint

drop constraint
{constr_name}

Template for dropping a
constraint within ALTER TABLE
command.

xdb.sqlcommand
.altertable.dropconstraint.check

xdb.sqlcommand
.
altertable.dropco
nstraint

Template for dropping a check
constraint within ALTER TABLE
command.

xdb.sqlcommand
.altertable.dropconstraint.primary

xdb.sqlcommand
.
altertable.dropco
nstraint

Template for dropping a primary
key constraint within ALTER TABLE
command.

xdb.sqlcommand
.altertable.dropconstraint.reference

xdb.sqlcommand
.
altertable.dropco
nstraint

Template for dropping a foreign
key constraint within ALTER TABLE
command.

xdb.sqlcommand
.altertable.dropconstraint.unique

xdb.sqlcommand
.
altertable.dropco
nstraint

Template for dropping a unique
key constraint within ALTER TABLE
command.

xdb.sqlcommand
.altertable.dropprimary

alter table
{table} drop
constraint
{constr_name}

For dropping a primary key from a
table

xdb.sqlcommand
.altertable.modifycolumn

alter table
{table} alter
{colname} type
{coltype}

For modifying a column’s type

xdb.sqlcommand
.altertable.modifycolumn.dropdefault

alter {column}
drop default

Used to indicate that a columns
default should be removed

xdb.sqlcommand alter {column} Used to indicate a column should

.altertable.modifycolumn.dropnotnull drop not null no longer be NOT NULL.
xdb.sqlcommand
.altertable.modifycolumn.setdefault

alter {column}
set default
{default_expr}

Used to modify the default value
of a column

xdb.sqlcommand
.altertable.modifycolumn.setnotnull

alter {column}
set not null

Used to indicate a column should
be set to not null

xdb.sqlcommand
.altertable.modifycolumn.using

using
{using_expr}

An expression for modifying the
column

xdb.sqlcommand.altertable
.settablespace

set tablespace
{tablespace}

Partial command template for
setting tablespace

xdb.sqlcommand.altertable
.settablespace.toparent

true

xdb.sqlcommand.analyze.template.table ANALYZE {table} The UPDATE STATISTICS or ANALYZE
command template to run on the
underlying database to update
internal statistics on a table
used by the optimizer.

xdb.sqlcommand.analyze.template
.column

ANALYZE {table}
({column_list})

Other ANALYZE command template
when columns are also specified.

xdb.sqlcommand.dropindex drop index
{index_list}

Command to use when dropping
indexes

xdb.sqlcommand.renametable.template

ALTER TABLE
{oldname} RENAME
TO {newname}

Format of command to rename
table.

xdb.sqlcommand.selectinto.template CREATE TABLE
{newname} AS
SELECT * FROM
{oldname}

Cammnd to use for SELECT INTO
implementation

xdb.sqlcommand.selectintotemp
.template

CREATE TEMP TABLE
{newname} AS
SELECT * FROM
{oldname}

Cammnd to use for SELECT INTO
implementation when using temp
tables

xdb.sqlcommand
.updatestatistics.template.table

VACUUM ANALYZE
{table}

The UPDATE STATISTICS or ANALYZE
command template to run on the
underlying database to update
internal statistics on a table
used by the optimizer.

Example template:

UPDATE STATISTICS {table}
xdb.sqlcommand
.updatestatistics.template.column

VACUUM ANALYZE
{table}
({column_list})

The UPDATE STATISTICS or ANALYZE
command template to run on the
underlying database to update
internal statistics on a table’s
column used by the optimizer. It
will process those columns that
were explicitly specified in the
GridSQL command. Example
template:

UPDATE STATISTICS COLUMN
{column_list} FOR {table}

xdb.sqlcommand
.updatestatistics.query

SELECT
stadistinct
FROM pg_statistic
s, pg_class c,
pg_attribute a
WHERE s.starelid
= c.oid
AND s.staattnum =

When calculating statistics, the
server will try and run the
corresponding command on the
underlying database, but when
finished, it may be able to
determine the selectivity from
the underlying database without
having to resort to calculating

a.attnum
AND c.relname =
‘{table}’
AND a.attname =
‘{column}’

it itself. If this parameter is
set, it defines a command to
obtain the statistics from the
underlying database.

xdb.sqlcommand.update.correlatedstyle 2 This is need for the UPDATE
command to work properly for
correlated updates.

xdb.sqlcommand.vacuum.template.table VACUUM
{vacuum_type}
{table}

The command to execute for
vacuuming.

xdb.sqlcommand
.vacuum.analyze.template.table

VACUUM
{vacuum_type}
ANALYZE {table}

The command to execute for
vacuuming with anaylze.

xdb.sqlcommand
.vacuum.analyze.template.column

VACUUM
{vacuum_type}
ANALYZE {table}
({column_list})

The command to execute for
vacuuming with analyze with
columns specified.

3.10.4.3 Date and Time Settings

xdb.edb_redwood_date false This value should be set to
whatever the value of
edb_redwood_date is in the
underlying Postgres Plus Advanced
Server database.

xdb.subsecondPrecision 0 The number of digits for
subsecond precision that the
underlying database supports.

3.10.4.4 Other Settings

xdb.allow.multistatement.query TRUE If true, allows multiple commands
separated by semicolon to be sent
together

xdb.client_encoding.ignore false client_encoding can only be
UNICODE. If this setting is true,
then it will not report an error
when trying to set to something
other than UNICODE. This is to
support certain 3rd party apps and
drivers.

xdb.combined.resultset.buffer 1000 Default read-ahead buffer per
ResultSet when combining

xdb.connectiontest.statement select 1 Statement to run against backend
to verify that connection is
still good.

xdb.connectiontest.createtable Statement to run to (if not null)
to create a table to run a query
against to test the connection
via xdb.connectiontest.statement.

xdb.identifier.case lower Default case to use for storing
identifier metadata and on the
backend databases when unquoted.
Other options are “upper” and
“preserve”

xdb.identifier.quote " Default quote character for
identifiers. This is used for

both open and close, unless
overridden below.

xdb.identifier.quote.open Open quote character for
identifiers

xdb.identifier.quote.close Close quote character for
identifiers

xdb.identifier.quote.escape Escape quote character for
identifiers

xdb.index.useAscDesc false Whether or not it is ok to use
ASC or DESC in indexes.

xdb.locks.readcommitted.mode S If using an isolation mode of
read committed (the default),
this can be fine tuned further.
S (Strict) indicates that only
one UPDATE or DELETE statement
may be executing at a time per
table, which also helps prevent
deadlocks. Setting this to L
(Loose) allows for concurrent
UPDATE and DELETE statements.

xdb.max_group_hash_count 5 How many of the expressions in
the group by clause to take into
consideration for hashing when
aggregating.

xdb.savepointType S T = subtransaction, S =
Savepoints. Although savepoints
from the user’s point of view is
currently not supported, this is
used in working with the
underlying database.

xdb.sort.case.sensitive false Whether or not the underlying
database sorts in a case
sensitive manner.

xdb.sort.nulls.style 2 How nulls are handled in sorting
on the underlying database.

0-Nulls always at start
1-Nulls always at end
2-Null greater than not null
3-Null less than not null

xdb.sort.trim true Whether or not leading spaces are
ignored in sorting

xdb.sql.usecrossjoin true Whether or not to use CROSS JOIN
syntax for Cartesian products. If
overridden to false, syntax used
will be “table1, table2” instead.

xdb.strip_interval_quote true When passing interval constants
to the backend, whether or not to
quote them in single quotes, such
as INTERVAL ‘1 day’.

xdb.xrowid.type

DECIMAL(31,0) The xrowid settings allow for
customization for databases that
support varying levels of
precision. xrowid is the GridSQL
internal unique tuple identifier.

xdb.xrowid.SQLtype 3 java.sql.Types.DECIMAL
xdb.xrowid.length 0
xdb.xrowid.precision 31
xdb.xrowid.scale 0

3.10.4.5 Gateway Settings for Administering Underlying Databases

Configuration Value Default Description
xdb.gateway.createdb createdb -h

{dbhost} –p
{dbport} -U
{dbusername} -O
{dbusername}
{database}

Template command for creating a
new database on underlying
database

xdb.gateway.dropdb dropdb -h {dbhost}
-p {dbport} -U
{dbusername}
{database}

Template command for dropping
database on nodes

xdb.gateway.path null Path to use when trying to
execute gateway commands. If not
set, it will use whatever is
found in user's PATH environment.

xdb.gateway.path.separator / The path separator used for
gateway commands.

3.10.5 gs-loader settings

Configuration Value Default Description
xdb.loader.dataprocessors.count 1 The number of processor threads

to use internally when performing
COPY. Increasing this may help in
multi-core/multi-processor
systems.

xdb.loader.header.columnseparator Optional separator for header for
output file if exporting.

xdb.loader.header.template Optional template for output
file.

xdb.loader.footer.columnseparator Optional separator for file
footer for output file if
exporting.

xdb.loader.footer.template Optional file footer template if
exporting.

xdb.loader.intermediate.commit
.interval

0 When shipping intermediate
results, the commit interval to
use, if xdb.use_load_for_step is
set to false. If non-zero and
used, this should be set fairly
high, like 100000.

xdb.loader.nodewriter.columninfo ({columns}) Column info template to use if
column names explicitly specified
on load

xdb.loader.nodewriter.columninfo.
none

Template to use if no column
names present

xdb.loader.nodewriter.delimiterinfo DELIMITER AS
'{delimiter}'

Template to be used within
xdb.loader.nodewrite.template,
for specifying passing along
delimiter information.

xdb.loader.nodewriter.delimiterinfo.
none

DELIMITER AS '\|\' delimiterinfo template to use
when the user did not specify any
delimiter. Default null.

xdb.loader.nodewriter.template psql -h {dbhost} -p
{dbport} -d
{database} -U
{dbusername} -a -e

This is used for bulk loading
data into the underlying
database, and describes the
template of the command to use.

-E -c \"COPY
{table}
{columninfo} FROM
STDIN WITH NULL AS
''
{delimiterinfo}\""

Note that another template,
delimiterinfo can be included
here. See xdb.loader.
nodewriter.delimiterinfo for more
information

xdb.loader.nodewriter.rowdelimiter \n Row separator
xdb.loader.nodewriter
.use_jdbc_copy_api

TRUE Indicates if COPY over JDBC
should be used when shipping
rows.

xdb.loader.row.nullvalue Null value indicator in loading
data

xdb.loader.row.quote (none) Indicates that strings are to be
quoted with the specified
character when loading data.

xdb.loader.row.quote.escape (none) Quote escape character
xdb.loader.row.template {value_list} Row template for output file
xdb.loader.row.columnseparator , The default column separator

character to use when loading in
data.

xdb.use_copy_out_for_step xdb.use_load_for_st
ep

When doing row shipping, whether
or not to use COPY OUT,to avoid
formatting overhead.

xdb.use_load_for_step y Indicates if a native database
bulk loader utility should be
used for handling intermediate
results.

3.10.6 Data Types and Data Type Mapping

GridSQL also includes the ability to map SQL data types, to allow for flexibility with
various underlying databases, since the different databases sometimes name things
differently than standard ANSI. Below appears the data types supported and their
default mappings, which can be overridden in the gridsql.config file.

Numeric types:

xdb.sqltype.integer.map=INT
xdb.sqltype.smallint.map=SMALLINT
xdb.sqltype.boolean.map=BOOLEAN

Floating point types (parameter "length" available):

xdb.sqltype.float.map=FLOAT ({length})
xdb.sqltype.real.map=REAL ({length})
xdb.sqltype.double.map=DOUBLE PRECISION

Fixed point types (parameters "precision" and "scale" available):

xdb.sqltype.fixed.map=FIXED ({precision}, {scale})
xdb.sqltype.numeric.map=NUMERIC ({precision}, {scale})
xdb.sqltype.decimal.map=DEC ({precision}, {scale})

Character types (parameter "length" available):

xdb.sqltype.char.map=CHAR ({length})
xdb.sqltype.varchar.map=VARCHAR ({length})
xdb.sqltype.nchar.map=CHAR ({length}) UNICODE
xdb.sqltype.nvarchar.map=VARCHAR ({length}) UNICODE

Date and Time types:

xdb.sqltype.time.map=TIME
xdb.sqltype.date.map=DATE
xdb.sqltype.timestamp.map=TIMESTAMP

Partitioning

Some types of columns can be partitioned on and others cannot be by default. That
is because inexact data types like FLOAT can be problematic. Some optional settings
allow these to be configured.

Configuration Value Default Description
xdb.allow.partition.integer true Columns of this type can be the table’s

designated partitioning key
xdb.allow.partition.char true Columns of this type can be the table’s

designated partitioning key
xdb.allow.partition.decimal true Columns of this type can be the table’s

designated partitioning key
xdb.allow.partition.float false Columns of this type can be the table’s

designated partitioning key
xdb.allow.partition.datetime false Columns of this type can be the table’s

designated partitioning key

3.10.7 Function Mapping

GridSQL’s recognized SQL is ANSI-92 in nature, along with the most common
functions found in most databases, especially PostgreSQL. However, it is possible to
also use additional functions that are supported by your underlying database when
issuing SQL commands. This also includes any stored procedures or user-defined
functions used, with the caveat that these should usually not access any tables
directly because each will be executed in isolation on the particular node.

By default, any functions not recognized will be executed on the underlying database
directly. In some queries, it is necessary for GridSQL to know the return type. In
those cases, it is best to define these in the gridsql.config file.

In addition, it is possible to override the definition for a GridSQL-recognized function
and map it to the equivalent function on the underlying database.

To either define or override functions, use xdb.sqlfunction, followed by the
function name, followed by following settings.

template Used only if recognized function is
being overridden or unknown function
is being defined, maps the function to
the underlying database

returntype The return sql data type of the function
paramcount The number of parameters the function

takes
argn Where n is 1, 2… the argument

The SQL data types recognized are:

CHAR, VARCHAR
DATE, TIME, TIMESTAMP
BYTE, SMALLINT, INTEGER, BIGINT
ANYINT, FLOAT, REAL, DOUBLE, NUMERIC, DECIMAL

In addition, ANYCHAR, ANYDATETIME, ANYINT and ANYNUMBER are short-hand
notations when more than one type is permissible:

ANYCHAR = CHAR|VARCHAR
ANYDATETIME = DATE|TIME|TIMESTAMP
ANYINT = BYTE|SMALLINT|INTEGER|BIGINT
ANYNUMBER = ANYINT|FLOAT|REAL|DOUBLE|NUMERIC|DECIMAL

For example, to define a function for SUBDATE(date, number_of_days) function:

xdb.sqlfunction.subdate.template=DATE({arg1})-INTERVAL '{arg2}
days'
xdb.sqlfunction.subdate.returntype=DATE
xdb.sqlfunction.subdate.paramcount=2
xdb.sqlfunction.subdate.arg1=DATE
xdb.sqlfunction.subdate.arg2=ANYNUMBER

3.10.8 Logging

GridSQL uses a popular library called log4j to implement its logging functionality.
More detail can be found online here:
http://logging.apache.org/log4j/docs/index.html.

There are a few defined “loggers” that are used: console, Server, QUERY, and
LONGQUERY. The console logger is used for errors and warnings. Server is used for
significant server events. QUERY allows you to log all SQL requests to the database,
which can be useful in troubleshooting. LONGQUERY allows you to log those requests
which seem to be taking a long time to execute, which is useful for a DBA to get
quickly to the source of which queries seem to be taking the most time to execute.

A request is determined to be “long” based on another gridsql.config value,
xdb.longQuerySeconds, which should be set to the number of seconds at which point
it will be logged in the LONGQUERY log.

4 Users and Privileges

4.1 Introduction

GridSQL supports creation of users and privileges.

It is important to distinguish between users at the GridSQL level, and those of the
underlying databases. GridSQL does not in turn try and create those same users on
the underlying databases. It always accesses the underlying database with the single
user defined in the gridsql.config file. GridSQL manages its own users and
privileges for allowing access to the tables.

4.2 Users

There are 3 classes of users: DBA, RESOURCE, and STANDARD. DBA users have
Database Administration privileges. RESOURCE users can create tables. STANDARD
users cannot create tables, but can access the database.

Users can be created with the CREATE USER command, and can be modified and
dropped with the ALTER USER and DROP USER commands, respectively.

4.3 Privileges

A user must be granted access to a table before being able to access it. By default, a
user who creates a table has all privileges on that table.

Privileges can be set on tables by using the GRANT and REVOKE commands.

More details on using these commands can be found in the GridSQL SQL Reference
manual.

The following types of privileges are available:

 SELECT
 INSERT
 UPDATE
 DELETE
 REFERENCES
 INDEX
 ALTER

Note that in the current version, GridSQL does not yet support ROLES.

5 Redundancy, Backup and Recovery

5.1 Redundancy

The current version of GridSQL has no built-in redundancy, but this is a feature that
will be added in the near future. Keep in mind that the component most likely to fail
is going to be a hard disk, and by using a RAID configuration like RAID 0+1 or RAID-
5, you are well protected against such a failure.

You can achieve a high degree of redundancy, but without automatic failover.
GridSQL will typically be used in reporting or data warehousing type of scenarios so
while important and will be added, it is not as critical as a high volume OLTP
database.

One solution is to rely on HA solutions such as from Veritas or Red Hat.

You could have your data out on a SAN, and have a stand-by node ready to point to
the failed node’s data. The gridsql.config file would have to be modified for the node,
and GridSQL stopped and restarted.

You can also replicate the metadata database and user-created databases on the
nodes.

For replication, you can rely on EnterpriseDB Replication or Slony for a manual
stand-by configuration. Note that any schema changes (ALTER TABLE) may require
re-snapshotting the modified table. To failover to a stand-by node, the node
information is changed in gridsql.config, and GridSQL is stopped and restarted.

To make efficient use of the nodes in the cluster, you should consider creating the
replicated copies of one node on another node. For example, node 1’s databases are
replicated to node 2, node 2’s to node 3, and so on.

5.2 Load Balancing

GridSQL provides some amount of “load balancing” by virtue of the fact that it
parallelizes queries and leverages multiple nodes. This allows queries over large
amounts of data to execute much faster than they would if they were just on a single
system.

Also, above, we suggest creating stand-by databases on other nodes in the cluster
that are also being used, for efficiency and cost savings, especially if OLTP activity is
low.

Still, if dedicated replicated standby nodes were created manually in your system
and you wish to make use of them for querying for better throughput, it is possible
to do so by hand, with some effort, however. (Built-in load balancing is planned for
future support.)

With the current version, you can execute multiple coordinators while keeping the
following in mind:

1. Your schema should be static. If doing schema changes, you should disable
access temporarily to the second cluster until synchronized.

2. An IP-based load balancer that supports sticky connections can be used to
distribute the load amongst the coordinators.

5.3 Backup & Recovery

How backups are performed will depend greatly on the underlying database you are
using. It is best to rely on the tools of the underlying database to backup nodes. That
allows you to do restores on individual nodes and achieve parallelism while
performing backups, as opposed to just doing a complete dump of all the data on all
the nodes to a single destination.

Many databases have the concept of full backups (backs up everything), incremental
backups and log file backups. This allows for different backup schedules. For
example, you may wish to do a complete backup of all of the nodes once a week,
and incremental backups every evening, or after a nightly load.

If you are in an environment where GridSQL houses a data warehouse or data mart
that where no update or delete activity occurs, with just periodic loads, you can also
have a backup schedule with periodic full backups of the database combined with
backups of the regular import files.

Performing the backups can be done directly on the nodes using the database tools
available for the underlying database. Alternatively, the execdb command can be
used, which allows for the execution of the (nearly) exact same command on all of
the underlying nodes. It makes use of the configuration value set for
gridsql.config file for the particular database product being used.

An example for backing up EnterpriseDB locally on each host appears below,
assuming a secure environment has been been set up to use ssh (secure shell):

execdb.sh -c "ssh –h {dbhost} 'pg_dump -h {dbhost} -U {dbusername}
{database} -f /data/back/{database}.dump'" -d mydatabase -u gridsql -p password

To recover a database, there are a couple of scenarios to consider. Typically, the
problem will just be on a single node due to a hardware or software failure. If that is
the case, use the tools of the underlying database to restore a complete backup if
necessary, and any incremental backups and logs, as the case may be. See the
documentation for your particular database product for details on how to do this.

Another scenario is that a recovery is required because of human error. In this case,
all of the nodes may very well be affected and will need to be restored.

6 Command Reference

In this section, commands used to administer GridSQL are described.

All of these are from classes in the GridSQL java jar files, but can be accessed more
conveniently via the script wrappers in the bin directory. If using Linux or other Unix
variant, append a “.sh” at the end of the commands listed here.

Note that the scripts invoke java and specify the amount of memory to use for the
JVM. In the event that you encounter the OutOfMemoryException, just increase the
values specified for –Xmx.

6.1 gs-cmdline

gs-cmdline.sh <connect> [-a] [-e] [-t] [-f inputfile]
[-o connect_options] [-z]

 <connect> is either a jdbcurl like,
 -j jdbc:postgresql://<host>:<port>/<database>?
user=<user>&password=<password>
 or
 [-h <host>] [-s <port>] -d <database> -u <user> [-p <password>]

 -a : add delimiter. If output mode is NORMAL, it will append
an extra delimiter at the end of the last column when doing
SELECT queries.
 -e : echo mode. Echoes any statements as it executes them
 -t : has effect of SET OUPUT NORMAL
 (turns off default table mode)
 -f : input file to be executed, instead of interactive mode.
 -z : display command execution times

The gs-cmdline utility is used to obtain a SQL command prompt and execute SQL
commands like CREATE TALBE, SELECT and INSERT interactively. A complete list of
SQL commands can be found in the SQL Reference manual.

Note that if you have installed EnterpriseDB Advanced Server, you can also
alternatively use edb-psql, or if using PostgreSQL, psql. If you use either of these,
be sure and include the appropriate GridSQL port option like –p 6453. In addition, if
executing it on the same server where the coordinator is running, you must use the
–h option to connect via sockets.

All commands issued should be terminated with “;”. To exit out of gs-cmdline, use
“exit;”.

There are some additional administrative commands, which appear in the table
below that can be used by the DBA.

Command Description
SHOW DATABASES Lists all of the user-created GridSQL

databases
SHOW TABLES Lists all of the tables that exist in the

current database
SHOW VIEWS Lists all of the views that exist in the

current database
SHOW TABLE <table> Lists the columns and their definitions of

the specified table
SHOW VIEW <view> Displays the view definition for the

specified view.
SHOW INDEXES ON <table> Lists all indexes for <table>
SHOW CONSTRAINTS ON
<table>

Lists the following types of constraints for
<table>: primary keys, foreign keys, foreign
key references

SHOW USERS Lists all defined users and their class
SHOW STATEMENTS Lists all of the currently executing SQL

statements
KILL <request_id> Kills execution of the request id specified.

Request ids can be obtained by executing the
SHOW STATEMENTS command.

6.2 gs-createdb

gs-createdb.sh -d dbname
 [-h host] [-s port]

 -u dbusername [-p dbpassword]
 -n nodelist

 [-m]

The gs-createdb command is used to create GridSQL databases.

There are two modes of operation, standard and manual. In standard mode it will try
and create the physical underlying databases on all of the specified nodes using
EnterpriseDB’s gs-createdb command.

In manual mode, specified by the –m option, it will not try and create the underlying
databases, but you are required to create them all by hand properly first.

GridSQL uses the naming convention of <dbname>N<nodeid> when naming the
actual physical databases on the underlying nodes. So, if you run gs-createdb in
manual mode, you should first create all databases and their names properly before
running gs-createdb with –m to wire it up. This naming scheme means that you
could create a logical multi-node system where all nodes are really on the same
physical system- this is not recommended of course, but may be helpful in testing.

Note that some underlying databases have a limit to the number of characters that
can be used when creating the database, so you may need to shorten the name you
choose if it is rejected

The values of dbusername and dbpassword are used to validate that the user
attempting to execute this command is a valid user with administrative (DBA) rights.

Note that if you are prompted by a password even with –p, it is the underlying tool,
like edb-psql that is prompting you for a password. This means you are executing
gs-createdb under a user where a trusted EnterpriseDB environment has not been
configured. Be sure that it is configured for user enterprisedb, and execute the
command as user enterprisedb.

The nodelist is a comma-separated list of node ids that must be valid nodes as
defined in the gridsql.config file.

Note: in the current version, if gs-server is running, it must be restarted after gs-
createdb is executed to be able to use the new database and allow users to connect
to it.

If something goes wrong on one of the nodes during creation (a slightly different
configuration on a node, underlying database server not running, etc), it might be
easiest to fix the problem as follows: drop the database with the gs-dropdb.sh
command, and then try again to create. If you still have difficulty, retry gs-
dropdb.sh with the –f option.

6.3 gs-createmddb

gs-createmddb.sh
 -u dbusername [-p dbpassword]

 [-m]

The gs-createmddb command creates and initializes the metadata database.

It relies on the xdb.metadata.* values in the gridsql.config file being used, so it
is important that this file is configured properly before executing. It will try and
create the database xdb.metadata.database on the system xdb.metadata.dbhost
using the command template for xdb.gateway.createdb (underlying database
dependent).

After creating the database and running the optional initialization script, gs-
createmddb will create all GridSQL metadata tables in the metadata database,
connecting to it as determined by the xdb.metadata.* configuration values in the
gridsql.config file.

Using the “-m” option, manual mode, will just try and create the required tables
without physically creating the database. This is useful if you want to create the
metadata database yourself and then just need to initialize it by creating the
required tables.

The gs-createmddb command also creates an initial administrative user used to
administer the cluster. As a result, -u followed by a username must be included. If –p
is left off, the user will be prompted for an initial password to be created.

6.4 gs-dropdb

gs-dropdb.sh -d dbname
 [-h host] [-s port]
 -u dbusername -p dbpassword [-f]

The gs-dropdb command is used to drop databases.

The dbusername must be a DBA user who has privileges to drop the database.

The underlying databases are dropped as defined by the xdb.gateway.dropdb
template in the gridsql.config file.

If there is a problem dropping the database, retry with the –f option (force). It will
continue to try and remove the metadata from the metadata database even after a
failure to remove any underlying databases, and will continue to try and drop from
all of the underlying nodes, even if it encounters an error on one.

6.5 gs-agent

gs-agent.sh -n nodelist

gs-agent starts the GridSQL Agent on a node participating in the cluster that has
been installed and configured for agent use.

Using gs-agent on the nodes facilitates better scalability when more nodes are
present in the cluster. Instead of the coordinator doing all the work in connecting
directly with the underlying databases, each node can be responsible for one.

Each agent is started with –n, followed by its designated node number.

Like gs-server, gs-agent uses a gridsql.config file for its configuration, but it is
much smaller compared to gs-server’s. Once the agent connects to the
coordinator, other configuration settings that are needed by the agent will be sent
over by the coordinator.

It is recommended to start gs-server on the coordinator before trying to start gs-
agent, but the agent can later be stopped and restarted without having to restart
gs-server.

6.6 gs-dbstart

gs-dbstart.sh -d dbname
 [-h host] [-s socketport]
 -u dbauser [-p dbapassword]
 [-w waittimeout]

The gs-dbstart command is used to connect to an existing gs-server that is already
running and bring the database dbname online. Internally, it will tell gs-server to
initialize all necessary pools and begin accepting connections for that database.

Which gs-server to connect to is determined by the host and port specified. If no
host is specified, localhost will be used by default. If no port is specified, 6453 will be
used by default.

A username and password is required to connect with an existing gs-server
process.

An optional waittime may be included to determine how long to wait before failing if
a node is inaccessible.

6.7 gs-dbstop

gs-dbstop.sh -d dbname
 [-h host] [-s socketport]
 -u dbusername [-p dbpassword]

The gs-dbstop command is used to connect to an existing gs-server that is already
running and bring the database dbname offline. Internally, it will tell gs-server to
free all related resources and stop accepting connections to that database.

The gs-server to connect to is determined by the host and port arguments. If no
host is specified, localhost will be used by default. If no port is specified, 6453 will be
used by default.

The user and password must be valid for that particular database.

6.8 gs-server

gs-server.sh [-d database_list] [-x]

gs-server is executed to start GridSQL.

The main configuration for the server appears in its corresponding gridsql.config
file, which is found in $GSPATH/config. Please see “The gridsql.config File”
section under Configuration in this document for more details.

When starting the gs-server, a space-separated list of databases to bring online
may be included with the –d option. A database must be brought online before
clients can connect to it. If there already is an gs-server instance running, GridSQL
databases can also be brought online with the gs-dbstart command.

The –x option indicates that all of those GridSQL user databases specified in the
database list should be brought online on the underlying nodes.

Note that when executing the gs-server process, you may need to modify the
parameters that Java uses, increasing the maximum amount of memory specified in
the gs-server.sh launch script.

6.9 gs-shutdown

gs-shutdown.sh [-h host] [-s socketport]
 -u dbusername -p dbpassword

 [-d dblist]

gs-shutdown is executed to shutdown a GridSQL (gs-server) process. It is not to be
confused with gs-dbstop, which merely brings a database offline, while allowing the
gs-server process to continue executing.

The gs-server to connect to is determined by the host and port specified. If no host
is specified, localhost will be used by default. If no port is specified, 6453 will be
used by default.

The user and password must be valid for that particular database.

6.10 gs-loader and gs-impex

The gs-impex utility allows for the importing and exporting of data, while gs-loader
is targeted exclusively for loading data.

There is a separate document, the GridSQL Import and Export Utilities manual, which
provides more detail about using these commands.

7 Isolation Levels and Locking

The four standard isolation levels are

SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

By default, GridSQL uses Read Committed mode (a transaction only sees those rows
from the beginning of the transaction until it completes). The ANSI SQL standard
allows for a more restrictive isolation level than the one specified, and GridSQL treats
Read Uncommitted as Read Committed and Repeatable Read as Serializable.

Furthermore, even in Read Committed mode, by default GridSQL will use an
exclusive table lock for Update and Delete statements. This can be overridden with
the gridsql.config setting xdb.locks.readcommitted.mode. It is set to “S” (strict) by
default, but can be overridden to “L” (loose), allowing for shared write locks on tables

If your particular environment does not have a lot of update activity, the default
should work adequately. Using mode “L” is useful for ETL processes where multiple
threads are used to update the same table, which will result in much better
performance. The downside of using mode “L” is the added risk that a deadlock may
occur across nodes if multiple client sessions are updating the same rows in a
transaction.

8 Troubleshooting

This section covers issues that you may encounter while using your GridSQL cluster,
and offers possible solutions.

8.1 Issues with Installation and Configuration

The script gs-createmddb.sh appears to hang

This is due to a missing or misconfigured .pgpass or pgpass.conf file. Correct the
problem, and try again.

“Template in use” error when running gs-createmddb.sh or gs-createdb.sh

This is an error message from the underlying EnterpriseDB database server, and is
caused when trying to create a new database when the template database is
believed to be in use. Restart EnterpriseDB, and try again.

8.2 Issues with Execution

Connections, Pooling, and Timeouts

GridSQL utilizes various thread and connection pools, and depending on their
settings and your workload, you may encounter a timeout issue.

For the client connecting to the GridSQL server, keep in mind that there is a fixed
limit to the maximum number of client connections. This is configured in the
gridsql.config file via the xdb.maxconnections setting, where you can override the
default setting.

GridSQL in turn uses pooled connections for communicating with the underlying
databases on the nodes. The number of connections used for each node is
determined via xdb.jdbc.pool.initsize and xdb.jdbc.pool.maxsize. You may also
have to change the settings in the underlying database that you are using to accept
more connections, if you use large values here.

If the number of client connections is larger than these pools, the requests will
remain on the request queue for a longer period of time. (Even if the number of
requests is smaller than the pools, some “expensive” requests may be not be
executed right away by the scheduler to try and both maximize throughput and be
responsive for less expensive requests.)

In addition to the pool sizes, the pools have timeouts. If an executing request cannot
obtain the needed connections after the time specified in milliseconds by
xdb.jdbc.pool.timeout, the request will timeout.

Closely related to the JDBC pools are the thread pools, with settings
xdb.default.threads.pool.maxsize, xdb.default.threads.pool.initsize,
xdb.default.threads.pool.timeout. A request will only be executed if there are
enough threads available in the pool. Normally the thread pool and jdbc pools should
have the same size values.

You may also receive timeouts under very heavy query loads with many concurrent
sessions. You can try increasing the values of xdb.messagemonitor.timeout.millis
and xdb.messagemonitor.timeout.short.millis.

“Cannot send data to nodes” error message

If you receive the “cannot send data to nodes” error message, it is likely that you
have run into a memory resource issue. Try modifying the gs-server.sh script,
increasing the values for MAXMEMORY and MINMEMORY, setting them both to the same
value.

Also, ensure that /etc/security/limits.conf has been changed to increase the nofile
setting.

If the problem is encountered only when there is a heavy load after modifying the
above, there may not be enough memory to handle your load. In that case, reduce
the number of concurrent queries that can execute simultaneously, by reducing
thread and connection pools. The default for xdb.default.threads.pool.maxsize
(10) should be quite safe, but if you overrode this substantially, you should throttle it
back down. Note that more statements (and client connections) can be accepted by
GridSQL, it will just prioritize and queue them up, while limiting the number of
concurrently executing queries.

If, however, you see this error message for even the simplest queries, there probably
is a permissions issue between the nodes. Make sure permissions are setup properly,
including the .pgpass file and the usernames and passwords used.

If the problem persists, there may be a resource problem or a problem with the
underlying PostgreSQL database. Please check system logs (e.g., /var/log/syslog)
and PostgreSQL log files.

OutOfMemory Exception

If you encounter this, you have run into a memory resource issue. Try modifying the
gs-server.sh script, increasing the values for MAXMEMORY and MINMEMORY, setting
them both to the same value.

Concurrent Performance Slow

The intended usage for GridSQL is in a data-warehousing environment where heavy
transaction activity is expected. Nonetheless, GridSQL still can process hundreds of
low-cost statements per second over multiple client sessions.

For an individual session, GridSQL does add an extra hop and therefore latency. So, a
single session will be much slower compared to a native EnterpriseDB database for

example. Keep in mind that individual session performance and total throughput are
different things; over many sessions working concurrently, much greater total
throughput can be achieved.

Please also read the chapter on isolation levels and locking. In particular, you can
modify the setting xdb.locks.readcommitted.mode in the gridsql.config file, setting it
to “L”.

9 Appendices

9.1 Appendix A – Metadata Database Schema

create table xsystablespaces (
 tablespaceid int not null,
 tablespacename varchar(255) not null,
 ownerid int not null,
 primary key(tablespaceid)
)
;
create unique index idx_xsystablespaces_1
 on xsystablespaces (tablespacename)
;
create table xsystablespacelocs (
 tablespacelocid int not null,
 tablespaceid int not null,
 filepath varchar(1024) not null,
 nodeid int not null,
 primary key(tablespacelocid)
)
;
create unique index idx_xsystablespacelocs_1
 on xsystablespacelocs (tablespaceid, nodeid)
;
alter table xsystablespacelocs
 add foreign key (tablespaceid) references xsystablespaces
(tablespaceid)
;
create table xsysusers (
 userid int not null,
 username char(30) not null,
 userpwd char(32) not null,
 usertype char(8) not null,
 primary key (userid)
)
;
create unique index idx_xsysusers_1 on xsysusers (username)
;
create table xsysdatabases
(
 dbid int not null,
 dbname varchar(128) not null,
 primary key (dbid)
)
;
create unique index idx_xsysdatabases_1
 on xsysdatabases (dbname)
;
create table xsysdbnodes
(
 dbnodeid int not null,
 dbid int not null,

 nodeid int not null,
 primary key (dbid, nodeid)
)
;
create unique index idxnodes1 on xsysdbnodes (dbnodeid)
;
alter table xsysdbnodes
 add foreign key (dbid) references xsysdatabases (dbid)
;
create table xsystables
(
 tableid int not null,
 dbid integer not null,
 tablename char(255) not null,
 numrows int not null,
 partscheme smallint not null,
 partcol char(255),
 parthash int,
 owner int,
 parented int,
 tablespaceid int,
 clusteridx varchar(80),
 primary key (tableid)
)
;
alter table xsystables
 add foreign key (dbid) references xsysdatabases (dbid)
;
alter table xsystables
 add foreign key (parentid) references xsystables (tableid)
;
alter table xsystables
 add foreign key (tablespaceid) references xsystablespaces
(tablespaceid)
;
create table xsystabparts
(
 partid int not null,
 tableid integer not null,
 dbid integer not null,
 nodeid int not null,
 primary key (partid)
)
;
alter table xsystabparts
 add foreign key (tableid) references xsystables (tableid)
;
alter table xsystabparts
 add foreign key (dbid, nodeid) references xsysdbnodes (dbid, nodeid)
;
create table xsystabparthash
(
 parthashid int not null,
 tableid integer not null,
 dbid integer not null,
 hashvalue integer not null,
 nodeid int not null,

 primary key (parthashid)
)
;
alter table xsystabparthash
 add foreign key (tableid) references xsystables (tableid)
;
alter table xsystabparthash
 add foreign key (dbid, nodeid) references xsysdbnodes (dbid, nodeid)
;

create table xsyscolumns
(
 colid int not null,
 tableid int not null,
 colseq smallint not null,
 colname varchar(255) not null,
 coltype smallint not null,
 collength int,
 colscale smallint,
 colprecision smallint,
 isnullable smallint not null,
 isserial smallint,
 defaultexpr varchar(255),
 checkexpr varchar(255),
 selectivity float,
 nativecoldef varchar(255),
 primary key (colid)
)
;
alter table xsyscolumns
 add foreign key (tableid) references xsystables (tableid)
;
create unique index idx_xsyscolumns_1
 on xsyscolumns (tableid, colseq)
;
create table xsysindexes
(
 idxid int not null,
 idxname varchar(80) not null,
 tableid int not null,
 keycnt smallint not null,
 idxtype char(1),
 tablespaceid int,
 issyscreated smallint not null,
 primary key (idxid)
)
;
alter table xsysindexes
 add foreign key (tableid) references xsystables (tableid)
;
alter table xsysindexes
 add foreign key (tablespaceid) references xsystablespaces
(tablespaceid)
;
create table xsysindexkeys
(
 idxkeyid int not null,

 idxid int not null,
 idxkeyseq int not null,
 idxascdesc smallint not null,
 colid int not null,
 primary key (idxkeyid)
)
;
alter table xsysindexkeys
 add foreign key (idxid) references xsysindexes (idxid)
;
alter table xsysindexkeys
 add foreign key (colid) references xsyscolumns (colid)
;
create unique index idx_xsysindexkeys_1
 on xsysindexkeys (idxid, idxkeyseq)
;
;
create table xsysconstraints
(
 constid int not null,
 constname varchar(128),
 tableid int not null,
 consttype char(1) not null,
 idxid int,
 issoft smallint not null,
 primary key (constid)
)
;
alter table xsysconstraints
 add foreign key (tableid) references xsystables (tableid)
;
alter table xsysconstraints
 add foreign key (idxid) references xsysindexes (idxid)
;
create table xsysreferences
(
 refid int not null,
 constid int not null,
 reftableid int not null,
 refidxid int not null,
 primary key (refid)
)
;
alter table xsysreferences
 add foreign key (constid) references xsysconstraints (constid)
;
alter table xsysreferences
 add foreign key (reftableid) references xsystables (tableid)
;
alter table xsysreferences
 add foreign key (refidxid) references xsysindexes (idxid)
;
;
create table xsysforeignkeys
(
 fkeyid int not null,
 refid int not null,

 fkeyseq int not null,
 colid int not null,
 refcolid int not null,
 primary key (fkeyid)
)
;
alter table xsysforeignkeys
 add foreign key (refid) references xsysreferences (refid)
;
alter table xsysforeignkeys
 add foreign key (colid) references xsyscolumns (colid)
;
alter table xsysforeignkeys
 add foreign key (refcolid) references xsyscolumns (colid)
;
create unique index idx_xsysforeignkeys_1
 on xsysforeignkeys (refid, fkeyseq)
;
create table xsystabprivs (
 privid int not null,
 userid int,
 tableid int not null,
 selectpriv char(1) not null,
 insertpriv char(1) not null,
 updatepriv char(1) not null,
 deletepriv char(1) not null,
 referencespriv char(1) not null,
 indexpriv char(1) not null,
 alterpriv char(1) not null,
 primary key (privid)
)
;
alter table xsystabprivs
 add foreign key (userid) references xsysusers (userid)
;
alter table xsystabprivs
 add foreign key (tableid) references xsystables (tableid)
;
create unique index idx_xsystabprivs_1
 on xsystabprivs (userid, tableid)
;
alter table xsystables
 add foreign key (owner) references xsysusers (userid)
;
create table xsysviews (
 viewid int not null,
 dbid int not null,
 viewname varchar(255),
 viewtext varchar(7500))
;
create unique index idx_xsysviews_1
 on xsysviews (viewid)
;
alter table xsysviews
 add foreign key (dbid) references xsysdatabases (dbid)
;
create table xsysviewscolumns (

 viewcolid int not null,
 viewid int not null,
 viewcolseqno int not null,
 viewcolumn varchar(255),
 coltype smallint not null,
 collength int,
 colscale smallint,
 colprecision smallint,
 primary key (viewcolid))
;
create unique index idx_sysviewscols_1
 on xsysviewscolumns (viewid, viewcolseqno)
;
alter table xsysviewscolumns
 add foreign key (viewid) references xsysviews (viewid)
;
create table xsysviewdeps (
 viewid int not null,
 columnid int not null,
 tableid int not null)
;
alter table xsysviewdeps
 add foreign key (viewid) references xsysviews (viewid)
;
create table xsyschecks (
 checkid int not null,
 constid int not null,
 seqno int not null,
 checkstmt varchar(8000),
primary key (checkid))
;
create unique index idx_xsyschecks_1
 on xsyschecks (constid, seqno)
;
alter table xsyschecks
add foreign key (constid) references xsysconstraints (constid)
;

